Find the coordinates of the points on the curve $y = \frac{1}{3}x^3 + \frac{9}{x}$ which the tangent is parallel to the line y = 8x + 3.

2.

dy

1.

Find \overline{dx} in each of the following cases:

$$y = \frac{(3x)^2 \times x^4}{x},$$

$$y = \sqrt[3]{x},$$

$$y = \frac{1}{2x^3}.$$

3. It is given that
$$f(x) = \frac{6}{x^2} + 2x$$

Given that $y = 6x^3 + \frac{4}{\sqrt{x}} + 5x$, find

i. Find
$$f'(x)$$
.

(i) $\frac{\mathrm{d}y}{\mathrm{d}x}$,

(ii) $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$

[3	8]

[3]

[3]

[2]

[2]

[4]

[2]

© OCR 2017.

4.

5. Given that $f(x) = 6x^3 - 5x$. Find

(a) f'(x),

In this question you must show detailed reasoning.

Find the gradient of the curve
$$y = 3 \cos 2x$$
 at the point where $x = \frac{1}{8}\pi$. [4]

7.
It is given that
$$f(x) = (3 + x^2)(\sqrt{x} - 7x)$$
-Find $f'(x)$. [5]

^{8.} In this question you must show detailed reasoning.

Find the values of *x* for which the gradient of the curve $y = \frac{2}{3}x^3 + \frac{5}{2}x^2 - 3x + 7_{is}$ positive. Give your answer in set notation. [5]

9. i. Solve the equation
$$x^2 - 6x - 2 = 0$$
, giving your answers in simplified surd form.

ii. Find the gradient of the curve
$$y = x^2 - 6x - 2$$
 at the point where $x = -5$.

[4]

[3]

[2]

10. a. Given that $f(x) = (x^2 + 3)(5 - x)$, find f'(x).

b. Find the gradient of the curve $y = x^{-\frac{1}{3}}$ at the point where x = -8.

END OF QUESTION paper

Mark scheme

Question	Answer/Indicative content	Marks	Part marks and guidance	
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 9x^2$	B1	x^2 from differentiating first term	
		M1	<i>kx</i> ⁻²	
		A1	– 9 <i>x</i> ⁻² (no + <i>c</i>)	
	Gradient of line = 8	B1		
			dy	
	$x^2 - 9x^2 = 8$	M1	Equate their der to 8 (or their gradient of line, if clear)	Note: If equated to +/-1/8 then M0 but the next M1 and its dependencies are available
	$x^{4} - 8x^{2} - 9 = 0$ $k^{2} - 8k - 9 = 0$	*M1	Use a correct substitution to obtain a 3 term quadratic or factorise into 2 brackets each containing x^2	If no substitution stated and treated as a quadratic (e.g. quadratic formula), no more marks until square rooting seen
	(k-9)(k+1) = 0	DM1	Correct method to solve 3 term quadratic – dependent on previous M1	SC: If spotted after first five marks- (3, 12) B1
	k = 9 (don't need $k = -1$)	A1	No extras	(-3, -12) B1 Justifies exactly two solutions B3
	<i>x</i> = 3, -3	DM1	Attempt to find <i>x</i> by square rooting – accept one value	
			No extras	If curve equated to line and before differentiating:
	<i>y</i> = 12, -12	A1	Examiner's Comments Many candidates realised what needed to be done in this unstructured question and a large proportion secured the first five marks by correctly differentiating	First four marks B1 M1 A1 B1 available as main scheme Then M0 for equating as this not been explicitly done Allow the M1 for the substitution DM1 for quadratic as main scheme (dependent on a correct substitution)

					the equation of the curve and equating this to 8, the gradient of the line. A relatively common error at this stage was to equate to the negative reciprocal of the gradient, showing confusion regarding parallel and perpendicular gradients. The resulting disguised quadratic proved far more difficult than usual as many candidates did not recognise this out of context, as it is more usually seen as a question in its own right. Of the candidates who did realise the need to make a substitution, many did not multiply by x^2 and incorrectly substituted y for x^2 and y^2 for x^4 ; they secured no more marks. Those who proceeded correctly usually factorised the simple resulting quadratic and remembered to take the square root to find x , although it was quite common to omit the –3. Thereafter, the vast majority of successful candidates found the corresponding value(s) of y correctly, although a number erroneously substituted into the line rather than the curve. This question proved appropriately discriminating with less than a quarter of candidates scoring full marks.	AOGradients and Differentiation of Standard Functions DM1 for square rooting (dependent on a correct substitution) A0 for the co-ordinates (as follows wrong working). Max mark 7/10
			Total	10		
2	i	i	$y = 9x^{\delta}$	M1	Obtain <i>kx</i> ⁵	If individual terms are differentiated then MOA0B0
	i	i		A1	Correct expression for $y(9x^5)$	
	i	i	$\frac{\mathrm{d}y}{\mathrm{d}x} = 45x^4$	B1 ft	 Follow through from their single <i>kxⁿ</i>, <i>n</i> ≠ 0. Must be simplified. Examiner's Comments Although a large number of candidates secured all three marks for this question, a lot of errors were seen in the initial stages. Most commonly, candidates forgot to square the 3 or divided both terms by <i>x</i> before simplifying. Candidates who obtained a single term 	$\frac{3x^2 + x^4}{x}$ is not a misread MOAOBO

$\overline{x} = x^{-\frac{1}{3}}$ differentiated to $\frac{4}{3}$ B1
ct simplification after correct expression

				2 <i>x</i> correctly differentiated to 2	Gradients and Differentiation of Standard Functions
				Examiner's Comments	
	i		B1	This was very well done, with over 90% of candidates securing all three marks despite the added difficulty of negative powers of <i>x</i> . Even candidates whose overall total was very low recognised and performed the routine of differentiation efficiently. Where errors did occur, these were usually in converting the original expression.	
	ii	$f''(x) = 36x^{-4}$	M1	Attempt to differentiate their (i) i.e. at least one term "correct"	Allow constant differentiated to zero
				Fully correct cao No follow through for A mark	
	ii		A1	Examiner's Comments	ISW incorrect simplification after correct expression
				Again, this was very well done, with almost all candidates recognising the notation and differentiating again, usually successfully.	
		Total	5		
4	i	$y = 6x^3 + 4x^{-2} + 5x$	B1	$\frac{4}{\sqrt{x}} = 4x^{-\frac{1}{2}}$ soi	
	i	$\frac{dy}{dx} = 18x^2 - 2x^{-\frac{3}{2}} + 5$	M1	Attempt to differentiate, any term correct	
	i		A1	Two correct terms	
	i		A1	Fully correct, no "+c"	
				Examiner's Comments	

					Gradients and Differentiation of Standard Functions
				This differentiation was extremely well done, with around four in five candidates securing all the available	
				marks; the ability to recognise and deal with a	
				fractional negative term was much better than in some	
				of error, although some errors were made with the first	
				term. The inclusion of a constant when differentiating is	
				now very rare indeed.	
		$d^2 y$ 5		dy	Any term still involving <i>x</i> correct — follow through from their
	ii	$dx^2 = 36x + 3x^2$	M1	Attempt to differentiate their \overline{dx}	expression for the M mark only
				cao www in either part	
				Examiner's Comments	
				The need to differentiate again was apparent to most	
	ii		A1	candidates, and again the standard of dealing with the	
				fractional negative term was very high. Some	
				candidates made arithmetical errors here and a few	
				failed to simplify 2	
		Total	6		
		18x [∠]	B1 (AO1.1)		
5	а		B1 (AO1.1)		
		-5	• 6 -		
			[2]		
			M1 (AO1.1)	ET their (a)	
	b	t''(x) = 36x			
			A1FT (AO1.1)		

	$\frac{3}{2}x^{-\frac{1}{2}} - 21 + \frac{5}{2}x^{\frac{3}{2}} - 21x^2$	M1 A1 [5]	Correct expression for <i>f(x)</i> in index form Attempt to differentiate their expression with at least one non-zero term correct	A1 All terms fully correct M1*dep Attempt to expand brackets with at least two terms simplified correctly	Gradients and Differentiation of Standard Functions
			Correct expression for f'(x) cao ISW any attempts to put back into root form.	A1 Correct expression for f'(x)	
			This question tested both in differentiation, with errors m process. Although almost a $\sqrt{x} = x^{\frac{1}{2}}$, a significant num $x^2 \times \sqrt{x}$ as x or x then still available for different and was almost always earn candidates used the product more work but was general	ndex notation and simple nore common in the former Il recognised that mber incorrectly processed $\frac{3}{2}$. The method mark was ntiating their expression, ned. A small number of ct rule, which created a lot ly efficiently applied.	

		Total	5	Gradients and Differentiation of Standard Functions
8		DR $\frac{dy}{dx} = 2x^{2} + 5x - 3$ $2x^{2} + 5x - 3 > 0 \Rightarrow (2x - 1)(x + 3) > 0$ $x < -3 \text{ or } x > \frac{1}{2}$ $\{x : x < -3\} \cup \{x : x > \frac{1}{2}\}$	M1 (AO 1.1a) A1 (AO 1.1) M1 (AO 1.1) M1 (AO 1.1) A1 (AO 2.5) [5]	Attempt to differentiate (all powers reduced by 1) Correct differentiation of all terms Attempt to find critical values by any appropriate method (e.g. factorising, completing the square, quadratic formula) Choose 'outside region' for their critical values
		Total	5	

9	i	$\frac{6\pm\sqrt{(-6)^2-4\times1\times-2}}{2\times1}$	M1	Valid attempt to use quadratic formula	Gradients and Differentiation of Standard Functions No marks for attempting to factorise
	i	$=\frac{6\pm\sqrt{44}}{2}$	A1		
	i	$= 3 \pm \sqrt{11}$	A1	Both roots correct and simplified	
	i	$x^{(x-3)^2-9-2=0} = \pm \sqrt{11}$	M1 A1	Correct method to complete square	Must get to $(x - 3)$ and \pm stage for the M mark, constants combined correctly gets A1
				Rearranged to correct form cao	
	i	$x = 3 \pm \sqrt{11}$	A1	Almost all candidates recognised from the wording of the question that factorisation was not appropriate and most opted to use the quadratic formula. Most were successful in the initial substitution but a significant number failed to deal accurately with the negative value of <i>c</i> . Many had difficulty simplifying the resulting surd. Some only divided the first term by 2; others erroneously divided $\sqrt{44}$ by 2 to get $\sqrt{22}$. Most of the candidates who attempted to complete the square were successful, although a number failed to find two roots. Overall, about 70% of candidates secured full marks.	
	ii	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6$	B1		
	ii	= - 16	B1	www	

			$(-8)^{-\frac{4}{3}}$ proved very challenging, with many ignoring one or both minus signs, not understanding the index or making calculation errors. Even those who were successful often then made errors in finding the product of two unit fractions.	Gradients and Differentiation of Standard Functions
	Total	4		